Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency.

Identifieur interne : 000614 ( Main/Exploration ); précédent : 000613; suivant : 000615

Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency.

Auteurs : Y. He [République populaire de Chine] ; H D Jones ; S. Chen ; X M Chen ; D W Wang ; K X Li ; D S Wang ; L Q Xia

Source :

RBID : pubmed:20202997

Descripteurs français

English descriptors

Abstract

An efficient Agrobacterium-mediated durum wheat transformation system has been developed for the production of 121 independent transgenic lines. This improved system used Agrobacterium strain AGL1 containing the superbinary pGreen/pSoup vector system and durum wheat cv Stewart as the recipient plant. Acetosyringone at 400 microM was added to both the inoculation and cultivation medium, and picloram at 10 mg l(-1) and 2 mg l(-1) was used in the cultivation and induction medium, respectively. Compared with 200 microM in the inoculation and cultivation media, the increased acetosyringone concentration led to significantly higher GUS (beta-glucuronidase) transient expression and T-DNA delivery efficiency. However, no evident effects of acetosyringone concentration on regeneration frequency were observed. The higher acetosyringone concentration led to an improvement in average final transformation efficiency from 4.7% to 6.3%. Furthermore, the concentration of picloram in the co-cultivation medium had significant effects on callus induction and regeneration. Compared with 2 mg l(-1) picloram in the co-cultivation medium, increasing the concentration to 10 mg l(-1) picloram resulted in improved final transformation frequency from 2.8% to 6.3%, with the highest frequency of 12.3% reached in one particular experiment, although statistical analysis showed that this difference in final transformation efficiency had a low level of significance. Stable integration of foreign genes, their expression, and inheritance were confirmed by Southern blot analyses, GUS assay, and genetic analysis. Analysis of T(1) progeny showed that, of the 31 transgenic lines randomly selected, nearly one-third had a segregation ratio of 3:1, while the remainder had ratios typical of two or three independently segregating loci.

DOI: 10.1093/jxb/erq035
PubMed: 20202997
PubMed Central: PMC2852660


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency.</title>
<author>
<name sortKey="He, Y" sort="He, Y" uniqKey="He Y" first="Y" last="He">Y. He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jones, H D" sort="Jones, H D" uniqKey="Jones H" first="H D" last="Jones">H D Jones</name>
</author>
<author>
<name sortKey="Chen, S" sort="Chen, S" uniqKey="Chen S" first="S" last="Chen">S. Chen</name>
</author>
<author>
<name sortKey="Chen, X M" sort="Chen, X M" uniqKey="Chen X" first="X M" last="Chen">X M Chen</name>
</author>
<author>
<name sortKey="Wang, D W" sort="Wang, D W" uniqKey="Wang D" first="D W" last="Wang">D W Wang</name>
</author>
<author>
<name sortKey="Li, K X" sort="Li, K X" uniqKey="Li K" first="K X" last="Li">K X Li</name>
</author>
<author>
<name sortKey="Wang, D S" sort="Wang, D S" uniqKey="Wang D" first="D S" last="Wang">D S Wang</name>
</author>
<author>
<name sortKey="Xia, L Q" sort="Xia, L Q" uniqKey="Xia L" first="L Q" last="Xia">L Q Xia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20202997</idno>
<idno type="pmid">20202997</idno>
<idno type="doi">10.1093/jxb/erq035</idno>
<idno type="pmc">PMC2852660</idno>
<idno type="wicri:Area/Main/Corpus">000607</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000607</idno>
<idno type="wicri:Area/Main/Curation">000607</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000607</idno>
<idno type="wicri:Area/Main/Exploration">000607</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency.</title>
<author>
<name sortKey="He, Y" sort="He, Y" uniqKey="He Y" first="Y" last="He">Y. He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jones, H D" sort="Jones, H D" uniqKey="Jones H" first="H D" last="Jones">H D Jones</name>
</author>
<author>
<name sortKey="Chen, S" sort="Chen, S" uniqKey="Chen S" first="S" last="Chen">S. Chen</name>
</author>
<author>
<name sortKey="Chen, X M" sort="Chen, X M" uniqKey="Chen X" first="X M" last="Chen">X M Chen</name>
</author>
<author>
<name sortKey="Wang, D W" sort="Wang, D W" uniqKey="Wang D" first="D W" last="Wang">D W Wang</name>
</author>
<author>
<name sortKey="Li, K X" sort="Li, K X" uniqKey="Li K" first="K X" last="Li">K X Li</name>
</author>
<author>
<name sortKey="Wang, D S" sort="Wang, D S" uniqKey="Wang D" first="D S" last="Wang">D S Wang</name>
</author>
<author>
<name sortKey="Xia, L Q" sort="Xia, L Q" uniqKey="Xia L" first="L Q" last="Xia">L Q Xia</name>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetophenones (pharmacology)</term>
<term>Picloram (pharmacology)</term>
<term>Plants, Genetically Modified (drug effects)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Rhizobium (genetics)</term>
<term>Transformation, Genetic (drug effects)</term>
<term>Transformation, Genetic (genetics)</term>
<term>Triticum (drug effects)</term>
<term>Triticum (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétophénones (pharmacologie)</term>
<term>Piclorame (pharmacologie)</term>
<term>Rhizobium (génétique)</term>
<term>Transformation génétique (effets des médicaments et des substances chimiques)</term>
<term>Transformation génétique (génétique)</term>
<term>Triticum (effets des médicaments et des substances chimiques)</term>
<term>Triticum (génétique)</term>
<term>Végétaux génétiquement modifiés (effets des médicaments et des substances chimiques)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acetophenones</term>
<term>Picloram</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Transformation, Genetic</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Transformation génétique</term>
<term>Triticum</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Rhizobium</term>
<term>Transformation, Genetic</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Rhizobium</term>
<term>Transformation génétique</term>
<term>Triticum</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acétophénones</term>
<term>Piclorame</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">An efficient Agrobacterium-mediated durum wheat transformation system has been developed for the production of 121 independent transgenic lines. This improved system used Agrobacterium strain AGL1 containing the superbinary pGreen/pSoup vector system and durum wheat cv Stewart as the recipient plant. Acetosyringone at 400 microM was added to both the inoculation and cultivation medium, and picloram at 10 mg l(-1) and 2 mg l(-1) was used in the cultivation and induction medium, respectively. Compared with 200 microM in the inoculation and cultivation media, the increased acetosyringone concentration led to significantly higher GUS (beta-glucuronidase) transient expression and T-DNA delivery efficiency. However, no evident effects of acetosyringone concentration on regeneration frequency were observed. The higher acetosyringone concentration led to an improvement in average final transformation efficiency from 4.7% to 6.3%. Furthermore, the concentration of picloram in the co-cultivation medium had significant effects on callus induction and regeneration. Compared with 2 mg l(-1) picloram in the co-cultivation medium, increasing the concentration to 10 mg l(-1) picloram resulted in improved final transformation frequency from 2.8% to 6.3%, with the highest frequency of 12.3% reached in one particular experiment, although statistical analysis showed that this difference in final transformation efficiency had a low level of significance. Stable integration of foreign genes, their expression, and inheritance were confirmed by Southern blot analyses, GUS assay, and genetic analysis. Analysis of T(1) progeny showed that, of the 31 transgenic lines randomly selected, nearly one-third had a segregation ratio of 3:1, while the remainder had ratios typical of two or three independently segregating loci.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20202997</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>61</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency.</ArticleTitle>
<Pagination>
<MedlinePgn>1567-81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erq035</ELocationID>
<Abstract>
<AbstractText>An efficient Agrobacterium-mediated durum wheat transformation system has been developed for the production of 121 independent transgenic lines. This improved system used Agrobacterium strain AGL1 containing the superbinary pGreen/pSoup vector system and durum wheat cv Stewart as the recipient plant. Acetosyringone at 400 microM was added to both the inoculation and cultivation medium, and picloram at 10 mg l(-1) and 2 mg l(-1) was used in the cultivation and induction medium, respectively. Compared with 200 microM in the inoculation and cultivation media, the increased acetosyringone concentration led to significantly higher GUS (beta-glucuronidase) transient expression and T-DNA delivery efficiency. However, no evident effects of acetosyringone concentration on regeneration frequency were observed. The higher acetosyringone concentration led to an improvement in average final transformation efficiency from 4.7% to 6.3%. Furthermore, the concentration of picloram in the co-cultivation medium had significant effects on callus induction and regeneration. Compared with 2 mg l(-1) picloram in the co-cultivation medium, increasing the concentration to 10 mg l(-1) picloram resulted in improved final transformation frequency from 2.8% to 6.3%, with the highest frequency of 12.3% reached in one particular experiment, although statistical analysis showed that this difference in final transformation efficiency had a low level of significance. Stable integration of foreign genes, their expression, and inheritance were confirmed by Southern blot analyses, GUS assay, and genetic analysis. Analysis of T(1) progeny showed that, of the 31 transgenic lines randomly selected, nearly one-third had a segregation ratio of 3:1, while the remainder had ratios typical of two or three independently segregating loci.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>H D</ForeName>
<Initials>HD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>X M</ForeName>
<Initials>XM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>D W</ForeName>
<Initials>DW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>K X</ForeName>
<Initials>KX</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>D S</ForeName>
<Initials>DS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>L Q</ForeName>
<Initials>LQ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BBS/E/C/00004975</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>03</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000098">Acetophenones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>866P45Y84S</RegistryNumber>
<NameOfSubstance UI="C051667">acetosyringone</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>O7437X49DW</RegistryNumber>
<NameOfSubstance UI="D010846">Picloram</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000098" MajorTopicYN="N">Acetophenones</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010846" MajorTopicYN="N">Picloram</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>3</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20202997</ArticleId>
<ArticleId IdType="pii">erq035</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erq035</ArticleId>
<ArticleId IdType="pmc">PMC2852660</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Rep. 1995 Dec;15(3-4):159-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24185767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1996 Nov;16(1-2):12-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Sep;35(1-2):205-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9291974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;478:105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19009441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Mar;21(7):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12789416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnology (N Y). 1995 Nov;13(11):1185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9636290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2008 Sep 26;4:22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18822125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2005 Mar;23(12):780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15761662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Aug;5(8):354-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10908881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2002 Aug;11(4):381-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12212841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 1996 May;5(3):213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8673150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Apr;52(357):857-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;478:115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19009442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Jun;28(6):903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19308413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2005 Oct;14(5):665-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16245157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;478:93-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19009440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2001 May;2(5):394-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2009 Jan;36(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17906943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Jul;10(1):165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8758986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Feb;5(2):299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8148881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;478:3-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19009436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnology (N Y). 1991 Oct;9(10):963-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1368724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Jun;21(10):1010-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12835912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 1999 Jun;4(6):226-231</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10366879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1988 May;11(3):355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2005 Sep 05;1(1):5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16270934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Jan;21(5):429-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12789445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2008 Jun;17(3):425-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17638109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 May;52(358):1135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;478:71-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19009439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Sep;25(6):951-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7919215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Aug;102(4):1077-1084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 May;64(1-2):125-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17294254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Nov;115(3):971-980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Apr;42(6):819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Jan;18(2):201-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1731983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Nov;25(11):1199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16773333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1990 Oct;9(6):303-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24226938</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chen, S" sort="Chen, S" uniqKey="Chen S" first="S" last="Chen">S. Chen</name>
<name sortKey="Chen, X M" sort="Chen, X M" uniqKey="Chen X" first="X M" last="Chen">X M Chen</name>
<name sortKey="Jones, H D" sort="Jones, H D" uniqKey="Jones H" first="H D" last="Jones">H D Jones</name>
<name sortKey="Li, K X" sort="Li, K X" uniqKey="Li K" first="K X" last="Li">K X Li</name>
<name sortKey="Wang, D S" sort="Wang, D S" uniqKey="Wang D" first="D S" last="Wang">D S Wang</name>
<name sortKey="Wang, D W" sort="Wang, D W" uniqKey="Wang D" first="D W" last="Wang">D W Wang</name>
<name sortKey="Xia, L Q" sort="Xia, L Q" uniqKey="Xia L" first="L Q" last="Xia">L Q Xia</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="He, Y" sort="He, Y" uniqKey="He Y" first="Y" last="He">Y. He</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000614 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000614 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20202997
   |texte=   Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20202997" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024